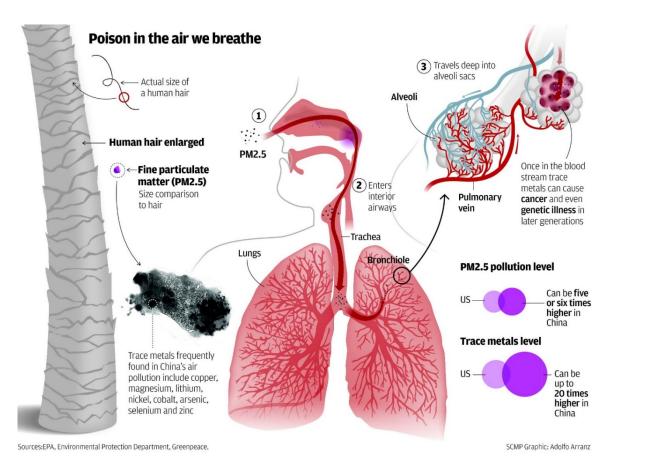
Control of Nanoparticles by Filtration

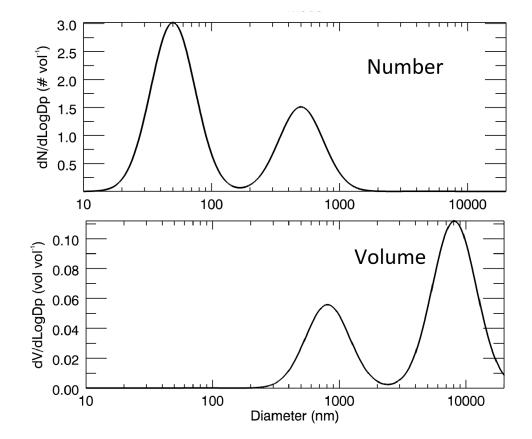
Joerg Ahne

Zhongchao Tan

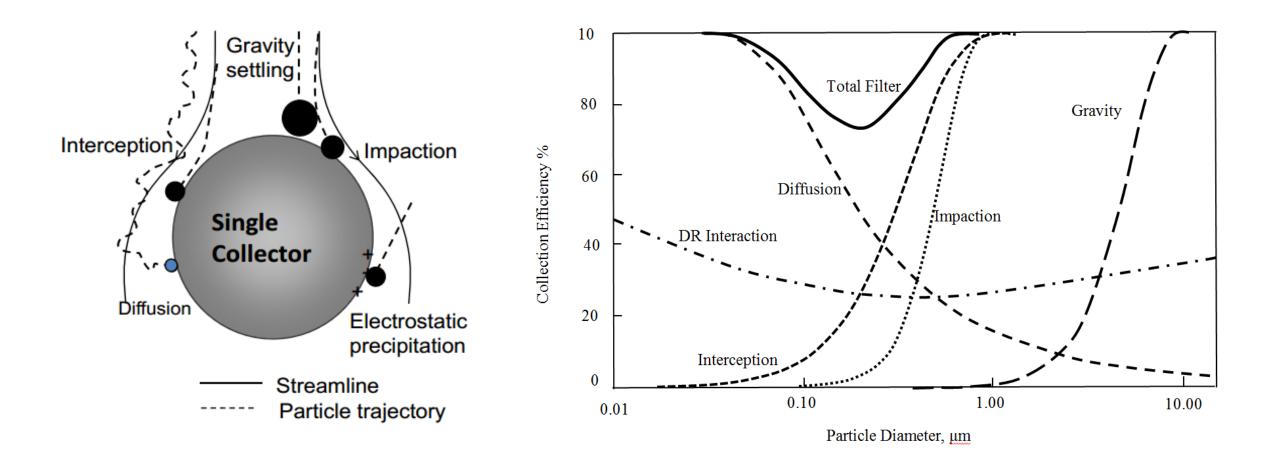
Introduction


Green Energy and Pollution Control Research Lab

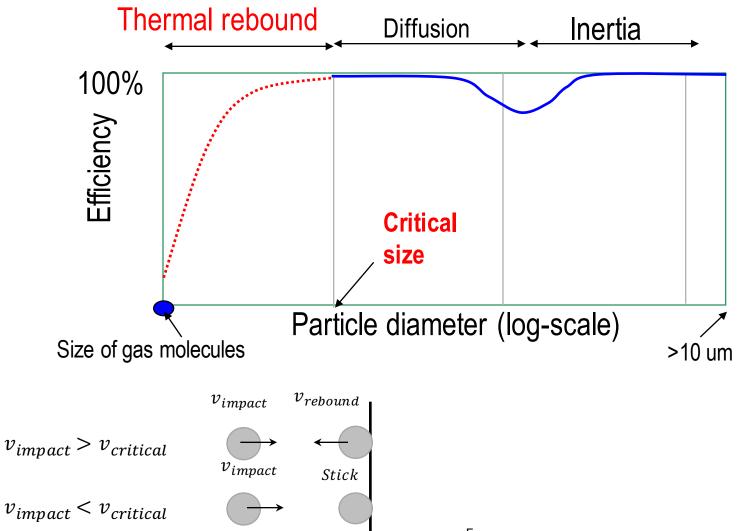
The research areas of at this lab are **thermal engineering sciences** with applications to


- green energy, and
- pollution control
 - Particulate Matter
 - Acidic Gases (SO₂, NO_x, and CO₂)
 - The acidic gases are converted into secondary air pollutants (aerosol particles suspended in air)
 - Man made "engineered" nanoparticles
- Our goals in the area of nanofibers are:
- 1) to understand the nanoaerosol-nanofiber interfacial behavior
- 2) to develop cost-effective technologies for large scale nanofiber fabrication.

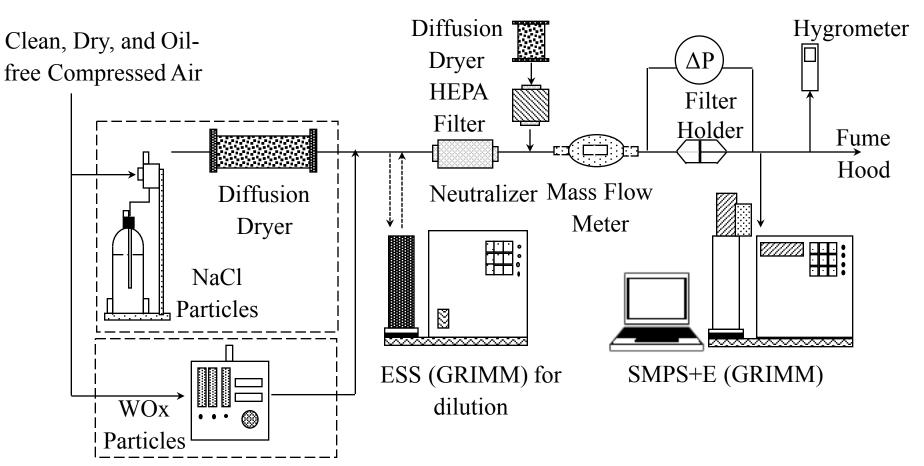
Health Impact of Nanoparticles



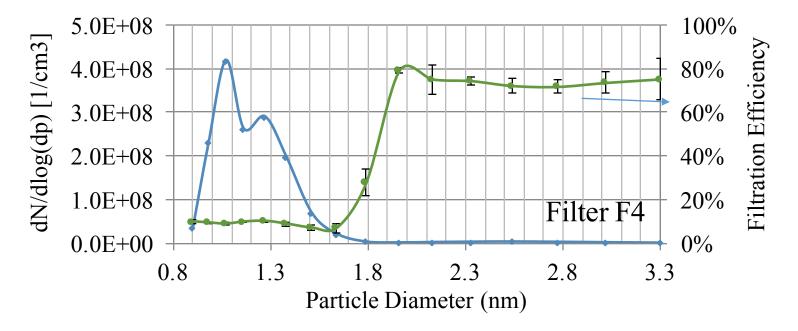
- Nanoparticles are particles sized smaller than 500 nm
- Can penetrate deep into the lungs



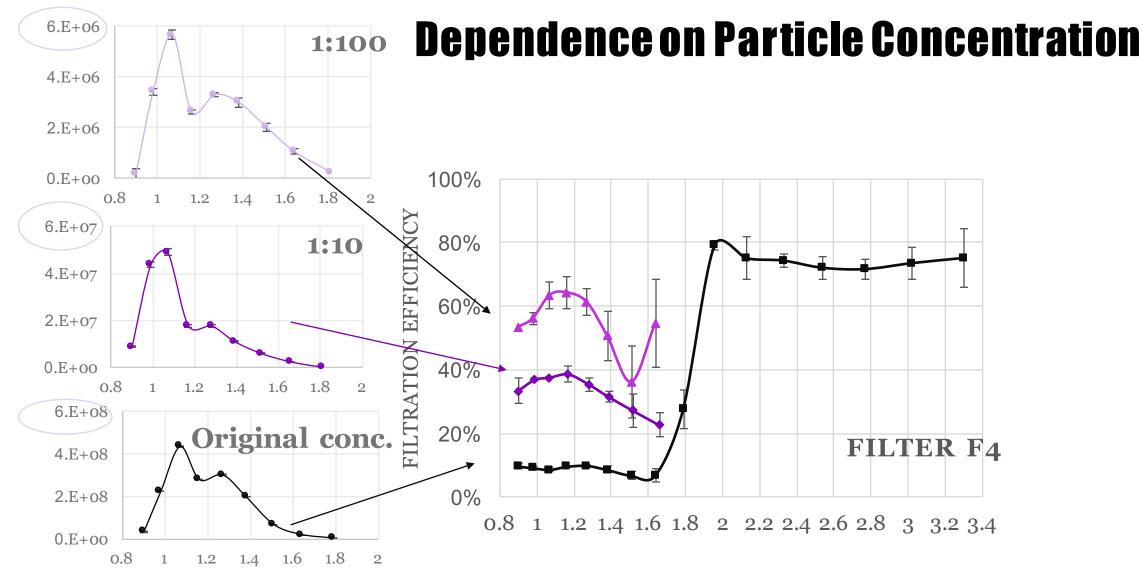
Classic Filtration Theory


UNIVERSITY OF WATERLOO FACULTY OF ENGINEERING

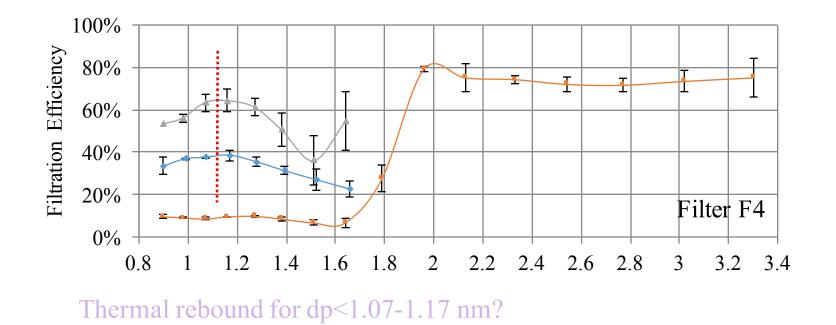
Thermal Rebound Theory



Filtration Testing Setup

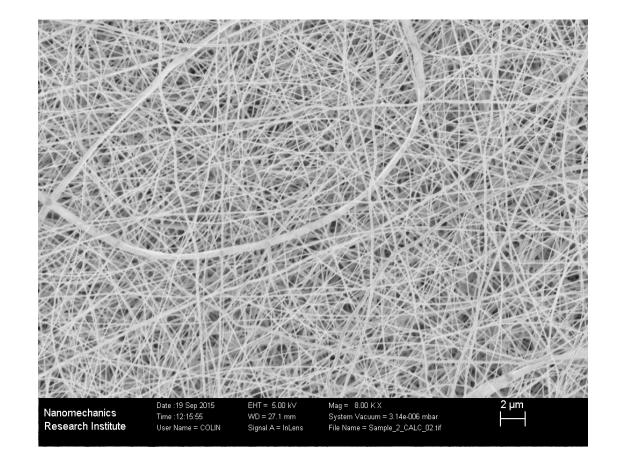


A Sharp Drop in Filtration Efficiency

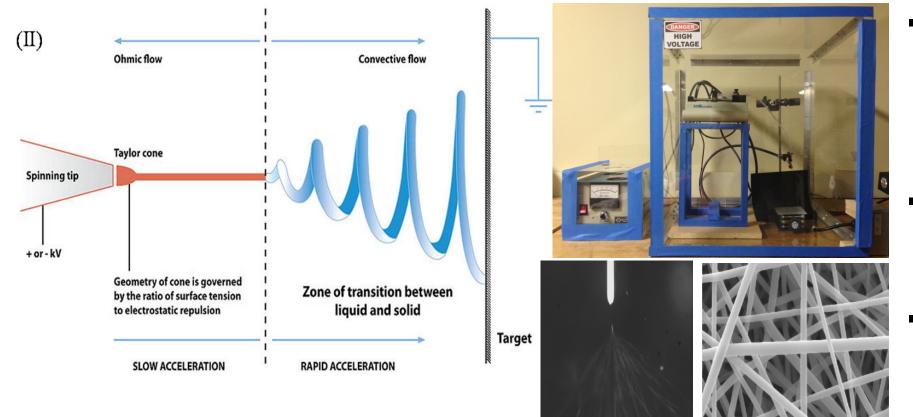

• Conventional filtration theory is no longer valid

Thermal Rebound Present?

• Thermal rebound is more obvious at lower particle concentrations


Challenges of the Thermal Rebound

- Thermal Rebound occurs at transition from molecular/nanoscale interactions to microscale interactions
- Current models employ **Boltzmann** distribution, which applies for **ideal gases**
- Model is based on **mechanical properties of the particles**, which are challenging to determine
- Model requires exact values of adhesion energy between bodies, which typically are unknown
- Models assume **perpendicular impaction**, which is unlikely practical scenario
- Agglomeration of particles leading to bigger particles

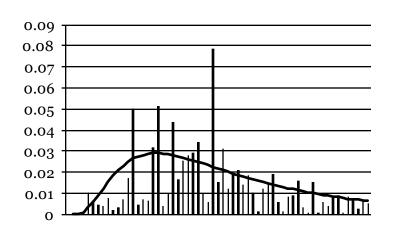

Nanofibrous Materials

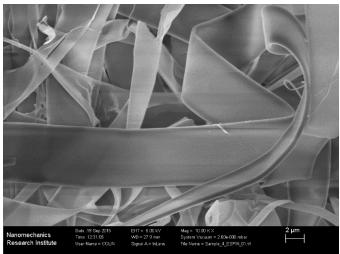
- Large Surface to Volume Ratio
- Flexibility in surface functionality
- Superior mechanical performance
- **Production** through:
 - Drawing
 - Template synthesis
 - Phase separation
 - Electrospinning

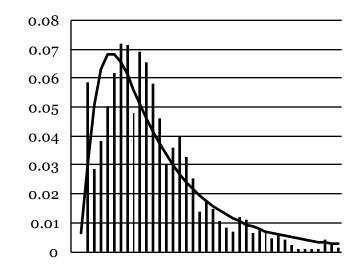
Electrospinning of Nanofibers

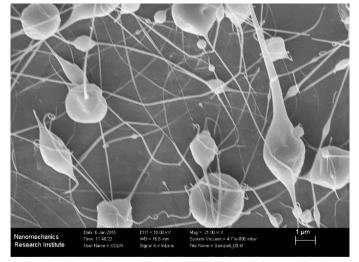
- Polymer solution drawn from a needle tip to a collector in an electric field
- Jet elongates due to random whipping
- Can produce
 fibers of a few
 hundred
 Nanometers

Parameters involed in Electrospinning

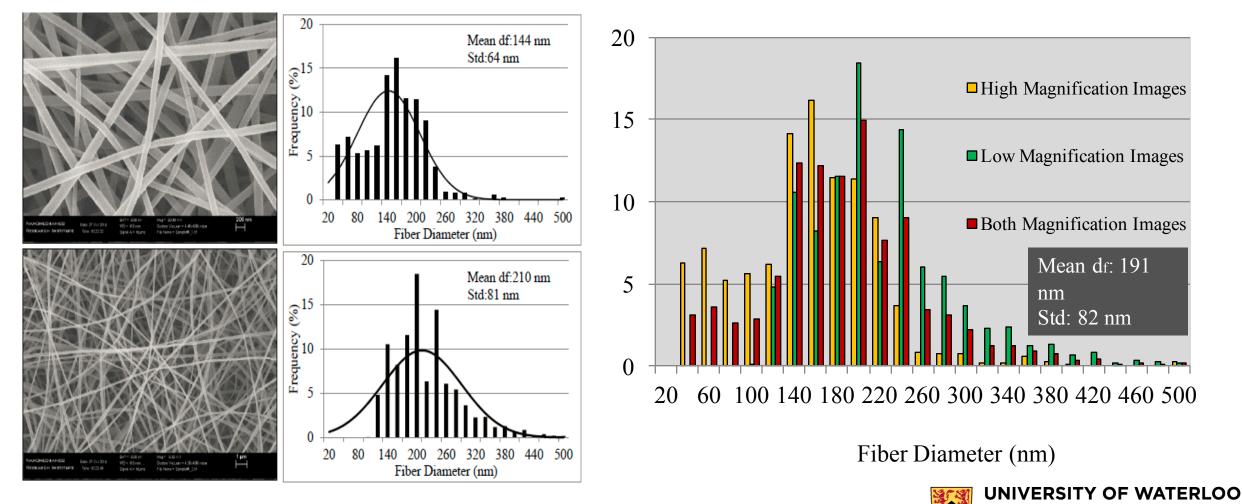

Processing Parameters		
Voltage	Distance	Needle Diameter
Feed Rate		
Environmental Conditions		
Temperature	Humidity	
Solution Distinct		
Elec. Conductivity	Viscosity	Surface Tension
Permittivity	Density	


- Parameters interact with each other
- Each parameter has boundary conditions
- Number of Parameters makes Prediction challenging
- Quality effects are know, quantity effects are not

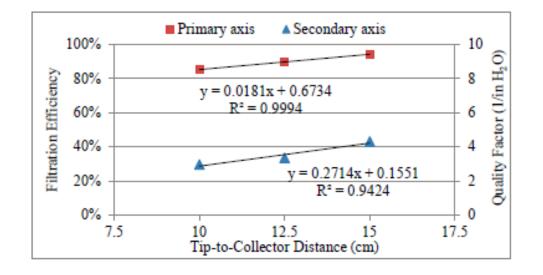



Knowledge Gap in Research in Electrospinning

- Highly experimental
- No model for the process
- Incorrect setting can lead to: dripping, clogging, spraying, beading, non-spherical fibers
- Low productivity of electrospinning



Determination of Fiber Size Distribution

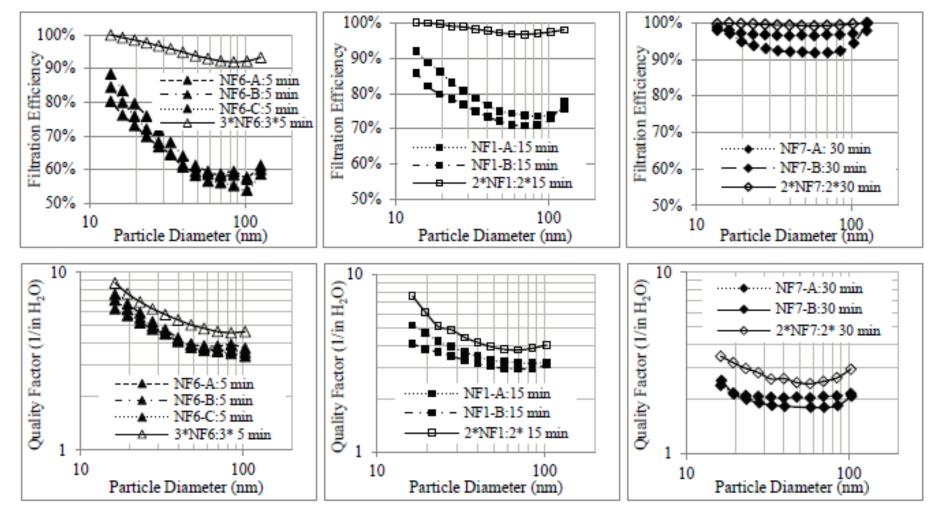


15

FACULTY OF ENGINEERING

Effect of Single Parameters on Filtration Performance

Tip-to-collector distanceDeposition Time


Primary axis • Secondary axis
100%

$$y = 0.618x^{0.1213}$$

 $R^2 = 0.9599$
 40%
 20%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%
 0%

$$Q_f = -\frac{\ln(1-\eta)}{\Delta P}$$

Effect of Layers

Conclusion and Summary

- Nanoparticles can be captured with nanofibrous materials
- Electrospinning is a versatile method of fiber production
- The electrospinning process is heavily depended on serval parameters
- Multiple thin nanofibrous layers are better than one thick layer
- The existing models for filtration of sub 10 nm particles are not modelling the actuals physical reality
- Thermal rebound as theory widely accepted, however it is challenging to proof

Tsinghua University - University of Waterloo Joint Research Center for Micro/Nano Energy & Environment Technology

UNIVERSITY OF WATERLOO FACULTY OF ENGINEERING

THANK YOU FOR YOUR ATTENTION